https://doi.org/10.1351/goldbook.I03313
When the addition of the differential amount of component \(i\) \(\mathrm{d}n_{i}^{\sigma }\) or \(\mathrm{d}n_{i}^{\text{s}}\) is effected at constant pressure \(p\), the differential molar @E02141@ of adsorption, \(\Delta _{a}H_{i}^{\sigma}\) or \(\Delta _{a}H_{i}^{\text{s}}\) also called the isosteric @E02141@ of adsorption (\(q^{\text{st}}\)) is defined as: \[\Delta _{a}H_{i}^{\sigma} = -q^{\text{st},\sigma} = U_{i}^{\sigma} - H_{i}^{\text{g}}\] \[\Delta _{a}H_{i}^{\text{s}} = -q^{\text{st},\sigma} = H_{i}^{\sigma} - H_{i}^{\text{g}}\] where \(H_{i}^{\text{s}}=(\frac{\partial H^{\text{s}}}{\partial n_{i}^{\text{s}}})_{T,p,m,n_{j}^{\text{s}}}\) and \(H_{i}^{\text{g}}\) is the partial molar @E02141@ of component \(i\) in the gas phase, i.e. \((\frac{\partial H^{\text{g}}}{\partial n_{i}^{\text{g}}})_{T,p,n_{i}^{\text{g}}}\)