Defined as: \[k_{\text{MEKC}} = \frac{n_{\text{mc}}}{n_{\text{aq}}} = K\cdot \frac{V_{\text{mc}}}{V_{\text{aq}}}\] where n mc and naq are the chemical amounts of the analyte in the micellar and aqueous phases, respectively, K is the distribution constant and V mc and Vaq are the corresponding volumes of the phases.
Notes: - In the case of an electrically neutral analyte, kMEKC can be calculated directly from the @M03920@ times: \[k_{\text{MEKC}} = \frac{t_{\text{m}} - t_{\text{eo}}}{t_{\text{eo}}(1 - t_{\text{m}}/t_{\text{mc}})}\]
- kMEKC should not be confused with the retention factor (in @C01182@) k. However, kMEKC is analogous to the @E02305@ (in @C01075@).
Source:
PAC, 2004, 76, 443. 'Terminology for analytical capillary electromigration techniques (IUPAC Recommendations 2003)' on page 449 (https://doi.org/10.1351/pac200476020443)